Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus.

نویسنده

  • E V Koonin
چکیده

A sequence motif that is conserved in a number of S-adenosylmethionine (SAM)-utilizing methyltransferases and is implicated in SAM binding was identified in the N-terminal portion of NS5 proteins of flaviviruses and in lambda 2 protein of reovirus. An additional conserved motif was shared by these viral proteins and two distinct groups of methyltransferases including as the prototypes Rhodobacter capsulatus hydroxyneurosporene methylase (crtF gene product) and yeast 3,4-dihydroxy-5-hexaprenylbenzoate methylase (COQ3 gene product), respectively. Statistically significant similarity was revealed between the region of flavivirus NS5 containing the SAM-binding motif and a newly characterized family of putative methyltransferases from bacteria, yeast and plants, which is related to the Coq3 group. Amino acid sequence signatures were derived that are unique for NS5 proteins and different subsets of (putative) cellular methyltransferases. It is hypothesized that the N-terminal domain of NS5 is a methyltransferase involved in viral RNA capping. Thus NS5 may be a two-domain protein, with its C-terminal domain comprising the RNA-dependent RNA polymerase. The putative methyltransferase domain of flaviviruses is unrelated to the methyltransferase domain previously characterized in positive-strand RNA viruses of the alphavirus-like supergroup. The lack of sequence similarity and different location of the putative methyltransferase domain underscores the drastic difference in the genome layout of flaviviruses and alphaviruses. The identification of the putative methyltransferase domain in reovirus lambda 2 protein is compatible with the available evidence that this protein is the viral capping enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility

Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...

متن کامل

P-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium

Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...

متن کامل

Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5.

Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue (DENV) and West Nile (WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase (RdRp) activity of the non-structural protein 5 (NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp ...

متن کامل

Molecular identification of reovirus in broiler type flocks in Golestan province, Iran

Background: Avian reovirus (ARV) has a global distribution in nature and most clinical signs are found in broiler type chickens. Aims: This study was conducted to detect and identify reovirus infections from vaccinated breeder chickens and their progenies. Methods: A total of 20 tissue and blood samples were collected from vaccinated broiler br...

متن کامل

Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain.

All pathogenic flaviviruses examined thus far inhibit host interferon (IFN) responses by suppressing the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Both Langat virus (LGTV; a member of the tick-borne encephalitis virus serogroup) and Japanese encephalitis virus use the nonstructural protein NS5 to suppress JAK-STAT signaling. However, NS5 is also critical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of general virology

دوره 74 ( Pt 4)  شماره 

صفحات  -

تاریخ انتشار 1993